

WiMAX Update (Technology and Standards)

WiMAX Overview and Update

- WiMAX Overview
 - WiMAX Technology
 - OFDM Access Method
 - 802.16d and 802.16e standards

What is WiMAX?

Worldwide Interoperability for Microwave Access

- WiMAX is a standards-based technology enabling the delivery of mobile wireless broadband connectivity
- WiMAX is:
 - 4G
 - Broadband
 - IP native
 - Standard-based: IEEE 802.16
 - Industry to create interoperable complete ecosystem

WiMAX Mission Statement

- Writing test specs
- Qualifying test labs
- Certifying products
- Focus on interoperability

WiMAX is the next revolutionary technology after WiFi!

WiMAX and its relation to Standards

- WiMAX is a commercial association which promotes the Broadband Wireless Access standards
 - Fixed Wireless Access based on IEEE 802.16 and on ETSI HIPERMAN
 - Mobile Wireless Access based on IEEE 802.16e
 - Relation similar to WiFi and 802.11
- In a continuous growth about 530 members
- In an advanced stage for Fixed Wireless Access
 - Over two years of work
- Advancing on Mobile Wireless Access
 - Initial certification to be achieved in 2008

Relations of Standards (802.16d and 802.16e) IEEE802.16 and HIPERMAN

- 802.16-2004 FWA standard
 - One MAC, three PHYs
 - OFDM, OFDMA and Single Carrier
- 802.16e Fixed + Mobile
 Broadband Wireless Standard
 - Improvements to PHY to support mobility
 - provides Handoff and powersave mechanisms
- HIPERMAN the parallel ETSI effort
 - Identical to 802.16-2004 with OFDM PHY only
- SPECIFY AIR PROTOCOL

WiMAX

- WiMAX focuses on
 - OFDM PHY for FWA
 - **OFDMA PHY for mobility**
- WiMAX Selects which options in the IEEE air protocol are mandatory
 - System profiles
- WiMAX defines a Networking specification for an End-toEnd Solution

WiMAX Forum Working Groups

ION Your Open WiMAX Choice

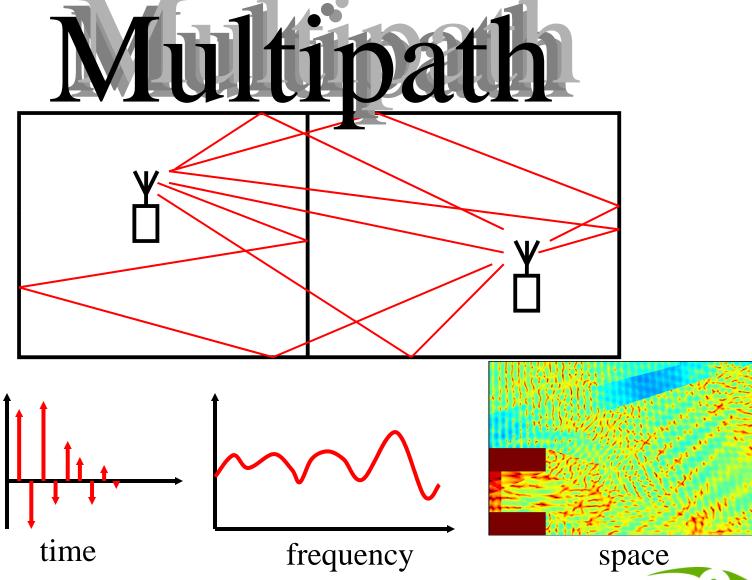
	WiMAX Forum Working Groups	
	Project Coordination Committee	
Shankar, at&t	Service Provider Working Group (SPWG) Mobile System/Air Interface Requirements	
Tom Tofigh, at&t Howard Liu, Disney	Applications Working Group (AWG) Real World Showcase & Simulation/Modeling	
Prakash, Intel	Network Working Group (NWG) Specifications	
TWG: Wonil Roh– Samsung Vladimir Yanover- Alvarion	Group (TWG) (MTG)	
Ed Agis, Intel	Certification Working Group (CWG) Certification Testing & Plugfests	
Tim Hewitt, British Telecom	Regulatory Working Group (RWG) World Wide Spectrum Policy	
Mo Shakuri, Alvarion	Marketing Working Group (MWG) Marketing, Membership Communications	
Hyung Kim, Mary Clark	Global Roaming Working Group (GRWG)	

Proprietary Information

SPWG, NWG, TWG, CWG

• SPWG – Service Providers Working Group

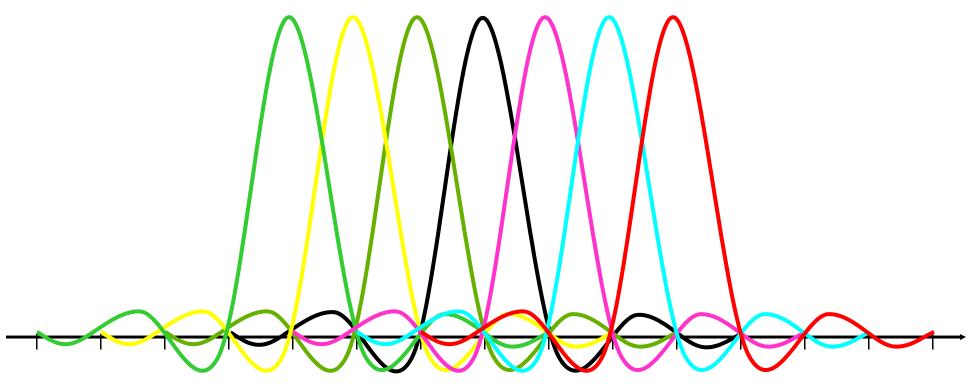
- Develop requirements (from operators' point of view) for both airprotocol and networking protocols
- NWG Networking Working Group
 - Develops specs for layers higher than PHY and MAC to define and end to end system
- TWG Technical Working Group
 - Defining the preferred profiles
 - 802.16 is full of options somebody has to choose
 - Writing PICS and TSS/TP (testing) documents
- CWG Conformance Working Group
 - Driving the Certification process
 - Test labs, test scripts



OFDM Access Method

al

arion



Proprietary Information

Frequency domain view

• ORTOGONALITY

• The peak of each signal coincides with nulls of other signals

.

IEEE 802.16e

- Attributes
 - OFDMA based
 - Scheduled air protocol
 - Designed for mobile environment
- Advantages
 - Scalable to wide bandwidths
 - Friendly to MIMO and AAS
 - Incorporates advanced features

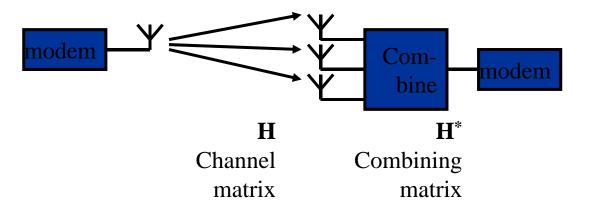
802.16e PHY Technology Features

- Scalable OFDMA adapts FFT size to bandwidth
- Adaptive modulation
 - Communicate to each terminal at proper rate
- Advanced forward error correction schemes (Turbo Codes)
- H-ARQ
 - Retransmission of erroneous data units with combining of pieces at PHY level
- Fast Power management
- MIMO
 - Use of multiple simultaneous signals (two or more radio waveforms) in a single frequency channel to exploit multipath propagation and thereby multiply spectral efficiency.
- Space-Time Code based Transmit Diversity
- Advanced Antenna techniques
 - Fixed and adaptive beamforming
- Soft Combining for MDHO ("Soft Handover") support

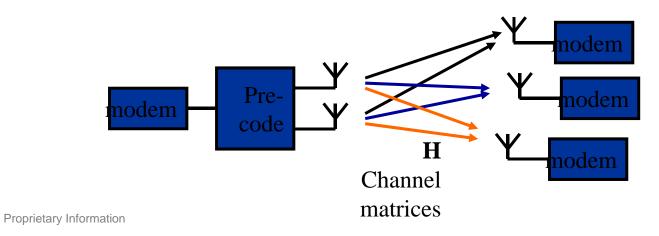
802.16e MAC Technology Features

- Centrally coordinated (scheduled)
- Frame based, TDD
- Fragmentation, packing
 - Provide for low MAC overhead
- Connection oriented
 - Provides for classification capabilities with inherent QoS support
- MAC layer ARQ
 - Provides for stable communication in noisy Radio channel
- Handover
 - Regular ("Hard" handover)
 - FBSS (Fast BS Switching)
 - MDHO ("Soft Handover")
- Sleep Mode
 - Power Saving procedures aligned with traffic type / statistics
- Idle Mode
 - Saves terminal power as well as network resources
- Multicast and Broadcast Services (MBS)
 - Terminal can receive the MBS traffic even in Idle Mode

802.16e - Main technical differentiators

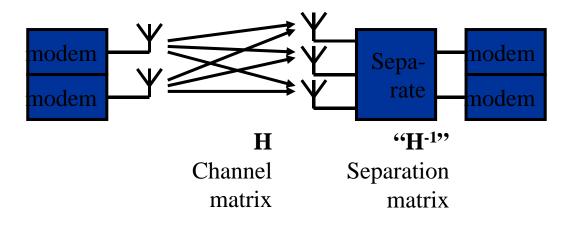


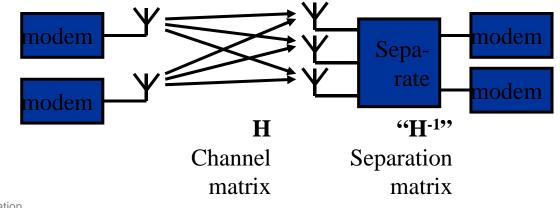
- **OFDMA** is considered the main PHY mode
- The OFDMA was upgraded to "Scalable OFDMA"
 - The FFT size depends on channel bandwidth
 - In 802.16 ODMA had only 2048 FFT size
- Enhancements to handle time varying channels
- Strengthening of the ECC to handle low-C/I scenarios
 - Repetition mode, Hybrid ARQ
- MIMO capabilities added
- MAC enhanced to support handoff
- Sleep mechanisms
 - Power conservation



Smart Antennas for Diversity and Link Budget

Receive Diversity


Transmit Diversity



Smart Antennas for Capacity

Multi-Input Multi-Output (MIMO)

Spatial Division Multiple Access (SDMA)

Proprietary Information

WiMAX and IEEE 802.16

- WiMAX is a subset of IEEE 802.16
 - No new features can be added

IEEE 80° 16a - A Fixed Wireless Access standard

- PtMP, connection oriented MAC layer
- Three Physical layers: OF D.M, OF DWA and Single Carrier
- Approved in April 2003
 - fonal features in 802.16 may be optional,

IEEE 802.108 -- n 5W called IEEE 802.16-2064

- Approved in July 2004
- Focused on fixed applications
- Consolidates all amendments and base standard for WiMAX

IEEE 802.16e – called IEEE 802.16-2005 - A Mobile Wireless Access standard

- Incorporate features and protocols needed for portability/mobility
- Modes added to enhance portability/mobility performance
- Approval in Nov05

WiMAX System Profiles: Fixed and Mobile

	Fixed WiMAX (IEEE 802.16-2004)	Mobile WiMAX (IEEE 802.16e-2005)
Multiplexing	OFDM	OFDMA
Duplexing mode	TDD, FDD	TDD
Modulation	BPSK, QPSK, 16-QAM, 64-QAM	QPSK, 16-QAM, 64-QAM (optional uplink)
Channel bandwidth	3.5, 7, 10 MHz	5, 7, 10 MHz
Frequency bands	2 GHz – 11 GHz	2.3-2.4 GHz 2.5-2.7 GHz 3.3-3.4 GHz 3.4-3.6 GHz

.

WiMAX Technology Benefits

- Optimized for fixed and mobile broadband
 - Optimal performance quality of service
 - Optimal cost less investment, better coverage
- Widest range of frequency channels for broadband connectivity
 - Next generation radios
 - Improved business case with high capacity and coverage
- Non Line of Sight (NLOS) Capabilities
 - OFDM, OFDMA
 - Scalable transmission coding for optimized signal & reception
 - Advanced antenna systems (AAS)
 - MIMO, beam forming
- Advanced over-the-air QoS for real-time voice and multimedia services

Thank You

